# Nucleon 是 HeurAMS 软件项目使用的基于 TOML 的专有源文件格式, 版本 5 # 建议使用的 MIME 类型: application/vnd.xyz.imwangzhiyu.heurams-nucleon.v5+toml ["__metadata__"] ["__metadata__.attribution"] # 版权元信息 author = "__heurams__" group = "高考古诗文" name = "虞美人" license = "CC-BY-SA 4.0" desc = "高考古诗文 - 虞美人" ["__metadata__.annotation"] # 键批注 note = "笔记" keyword_note = "关键词翻译" translation = "语句翻译" ["__metadata__.formation"] # 文件配置 delimiter = "/" tts_text = "eval:payload['content'].replace('/', '')" ["__metadata__.orbital.puzzles"] # 谜题定义 # 我们称 "Recognition" 为 recognition 谜题的 alia "Recognition" = { __origin__ = "recognition", __hint__ = "", primary = "eval:payload['content']", secondary = ["eval:payload['keyword_note']", "eval:payload['note']"], top_dim = ["eval:payload['translation']"] } "SelectMeaning" = { __origin__ = "mcq", __hint__ = "eval:payload['content']", primary = "eval:payload['content']", mapping = "eval:payload['keyword_note']", jammer = "eval:list(payload['keyword_note'].values())", max_riddles_num = "eval:default['mcq']['max_riddles_num']", prefix = "选择正确项: " } "FillBlank" = { __origin__ = "cloze", __hint__ = "", text = "eval:payload['content']", delimiter = "eval:metadata['formation']['delimiter']", min_denominator = "eval:default['cloze']['min_denominator']"} ["__metadata__.orbital.schedule"] # 内置的推荐学习方案 quick_review = [["FillBlank", "1.0"], ["SelectMeaning", "0.5"], ["Recognition", "1.0"]] recognition = [["Recognition", "1.0"]] final_review = [["FillBlank", "0.7"], ["SelectMeaning", "0.7"], ["Recognition", "1.0"]] ["春花秋月何时了, 往事知多少."] note = [] content = "春花/秋月/何时/了/, 往事/知/多少./" translation = "春天的花, 秋天的月, 什么时候才能了结? 往事又能知道有多少! " keyword_note = {"了" = "了结, 完结", "往事" = "过去的事情"} ["小楼昨夜又东风, 故国不堪回首月明中."] note = [] content = "小楼/昨夜/又/东风/, 故国/不堪/回首/月明/中./" translation = "昨夜小楼上又吹来了春风, 在这皓月当空的夜晚, 怎承受得了回忆故国的伤痛. " keyword_note = {"东风" = "春风", "故国" = "指南唐故都金陵", "不堪" = "不能忍受", "回首" = "回忆"} ["雕阑玉砌应犹在, 只是朱颜改."] note = [] content = "雕阑/玉砌/应/犹在/, 只是/朱颜/改./" translation = "精雕细刻的栏杆、玉石砌成的台阶应该还在, 只是所怀念的人已衰老. " keyword_note = {"雕阑玉砌" = "指远在金陵的南唐故宫", "应犹" = "应该还", "朱颜改" = "指所怀念的人已衰老"} ["问君能有几多愁, 恰是一江春水向东流."] note = [] content = "问君/能/有/几多/愁/, 恰是/一江/春水/向/东流./" translation = "要问我心中有多少哀愁, 就像这不尽的滔滔春水滚滚东流. " keyword_note = {"君" = "作者自称", "能" = "或作'都'、'那'、'还'、'却'", "几多" = "多少", "恰是" = "正像是"}