This commit is contained in:
Wang Zhiyu 2025-03-10 18:37:53 +08:00
parent 5519a8595b
commit b86ffd9f5b
26 changed files with 2078 additions and 0 deletions

View File

@ -0,0 +1,6 @@
# Commodore 飞行控制系统 [存档]
这是 AiraPulsar 的前身, commodore 飞行控制系统.
与 AiraPulsar 相比, 它只有 client 和 server 之间相互通讯, 导致 server 端需要内网穿透才能受控.
此外, commodore 使用原始的 socket 协议通讯, 粘包问题导致信息需要以 4KB/次 的速率恒定传输, 且 JSON 数据大小受到限制, 稳定性不足.
commodore 代码缺乏模块化, 难以维护
尽管它代码风格杂乱无序, 但它还是勉强完成了飞行控制同步的基本功能, 保留此文件夹仅作留存参考用, 并无实用价值

Binary file not shown.

View File

@ -0,0 +1,69 @@
from os import environ
environ['PYGAME_HIDE_SUPPORT_PROMPT'] = '1'
import pygame
from pygame.locals import *
import cv2
import client_lib as lib
import client_elements as elements
import math
import time
import threading
import logging
uitest_enabled = 1
global running
elements = list()
class Element:
def __init__(self, name, desc):
self.name = name
self.desc = desc
def action(self):
print("default element action")
print(f"name: {self.name}")
print(f"desc: {self.desc}")
def data_proc():
global running
pass
def input_proc():
global running
while running:
for event in pygame.event.get():
if event.type == pygame.QUIT:
running = False
if event.type == pygame.MOUSEMOTION:
loggin.info("鼠标: ", event.pos[0] - mousepos[0], event.pos[1] - mousepos[1])
mousepos = event.pos
pass
def main():
colors = {"main":"white", "remote":"green", "warn":"red"}
fonts = {"medium":pygame.font.Font('src/font.ttf', 20), "big":pygame.font.Font('src/font.ttf', 40), "huge":pygame.font.Font('src/font.ttf', 60), "small":pygame.font.Font('src/font.ttf', 16), "tiny":pygame.font.Font('src/font.ttf', 12)}
height = 1080
width = int(height / 9 * 16)
pygame.init()
pygame.display.set_caption(f"Commodore 远程终端")
screen = pygame.display.set_mode((width, height), RESIZABLE)
icon = pygame.image.load("src/icon.ico").convert_alpha()
pygame.display.set_icon(icon)
global running
running = True
pygame.mouse.set_visible(False)
pygame.mouse.set_pos([width / 2, height / 2])
mousepos = (width / 2, height / 2)
input_thr = threading.Thread(target=input_proc, name='InputProcess')
input_thr.start()
data_thr = threading.Thread(target=data_proc, name='DataProcess')
data_thr.start()
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
if uitest_enabled == 0:
pass # load data

View File

@ -0,0 +1,29 @@
import socket
import json
import logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
def operate():
strs = input()
return strs
dest = "127.0.0.1"
port = 40808
logging.info("启动 AZURE 客户端")
logging.info("启动远程主机网络通讯")
remote = socket.socket()
remote.connect((dest, port))
data: str = remote.recv(2048).decode("UTF-8")
first = json.loads(data)
devices = first["devices"]
name = first["name"]
logging.info(f"已链接至 {name}")
while True:
msg = json.dumps(operate()) # 状态回传
size = len(msg.encode())
remote.send(msg.encode("UTF-8").ljust(2048 - size)) # encode将字符串编码为字节数组对象
logging.info("命令已回传")

View File

@ -0,0 +1,363 @@
from os import environ
environ['PYGAME_HIDE_SUPPORT_PROMPT'] = '1'
import pygame
from pygame.locals import *
import cv2
import client_lib as lib
import math
import time
import threading
import logging
camera_enabled = 0
def camera_refresh():
global frame_surface
if camera_enabled:
frame = camera.read()[1]
frame_rgb = cv2.resize(cv2.flip(cv2.rotate(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB), cv2.ROTATE_90_CLOCKWISE), 1), (height, width))
frame_surface = pygame.surfarray.make_surface(frame_rgb)
else:
frame_surface = pygame.Surface((width, height), pygame.SRCALPHA)
frame_surface.fill((0, 0, 0, 250)) # 将表面填充为完全透明
def welcome():
for i in range(0, 120):
screen.fill("black")
text = fonts['huge'].render("Initialize Azure Network BVLOS Flighting Controlling System", True, colors['main'], None)
screen.blit(text, (width / 2 - text.get_width() / 2, height / 2 - 150))
text = fonts['big'].render(f"Remote connection: {remote.name}", True, colors['main'], None)
screen.blit(text, (width / 2 - text.get_width() / 2, height / 2))
pygame.display.flip()
clock.tick(60)
def cmdgen():
global devices
cmd = ""
for i in devices.keys():
word = ""
if remote.jdata["devices"][i]['type'] == "Flank":
word = "angle"
if remote.jdata["devices"][i]['type'] == "Engine":
word = "speed"
cmd += f"hw['{i}'].set_{word}({devices[i]})\n"
# loggin.info(cmd)
return cmd
def transmit(type, cmd):
msg = dict()
msg['type'] = type
msg['cmd'] = cmd
msg['time'] = time.asctime()
remote.jsend(msg)
def update():
global remote_devices, sensors
remote.refresh()
types = {'Flank':'angle', 'Engine':'speed'}
for i in devices.keys():
remote_devices[i] = remote.jdata['devices'][i][types[remote.jdata['devices'][i]['type']]]
for i in sensors.keys():
sensors[i] = remote.jdata['sensors'][i]
def calc_pair2angle(dyna):
tan = (dyna[0][1] - dyna[1][1]) / (dyna[0][0] - dyna[1][0])
return round(math.degrees(math.atan(tan)), 1)
def calc_langle(posx):
if (width / 2 - 30 < mousepos[0] < width / 2 + 30) and (height / 2 - 30 < mousepos[1] < height / 2 + 30):
global f_shootmode
f_shootmode = 1
return 0
f_shootmode = 0
a = abs(posx - width / 2) / (width * 0.76) * lwidth # 底边
b = vdist
angle_a = math.atan(a / b)
angle_a = math.degrees(angle_a)
if posx < width / 2:
angle_a = -angle_a
return angle_a
def calc_vangle(posy):
if (width / 2 - 30 < mousepos[0] < width / 2 + 30) and (height / 2 - 30 < mousepos[1] < height / 2 + 30):
global f_shootmode
f_shootmode = 1
return 0
f_shootmode = 0
a = abs(posy - height / 2) / (height * 0.5) * vwidth # 底边
b = vdist
angle_a = math.atan(a / b)
angle_a = math.degrees(angle_a)
if posy < height / 2:
angle_a = -angle_a
return angle_a
def calc_langle2(posx):
a = abs(posx - width / 2) / (width * 0.76) * lwidth # 底边
b = vdist
angle_a = math.atan(a / b)
angle_a = math.degrees(angle_a)
if posx < width / 2:
angle_a = -angle_a
return angle_a
def calc_vangle2(posy):
a = abs(posy - height / 2) / (height * 0.5) * vwidth # 底边
b = vdist
angle_a = math.atan(a / b)
angle_a = math.degrees(angle_a)
if posy < height / 2:
angle_a = -angle_a
return angle_a
def showtext(text, pos, color = 'main', fontid = "medium"):
db_text = fonts[fontid].render(text, 0 if fontid == "tiny" else 1, colors[color], None)
screen.blit(db_text, pos)
def showline(pos1, pos2, width = 2, color = 'main'):
pygame.draw.line(screen, colors[color], pos1, pos2, width)
def debug_ui():
global sensors
showtext(f"远程方位角(Z): {sensors['zangle']}", (32, 844), fontid = "tiny")
showtext(f"远程滚动角(Y): {sensors['yangle']}", (32, 858), fontid = "tiny")
showtext(f"远程倾斜角(X): {sensors['xangle']}", (32, 872), fontid = "tiny")
showtext(f"本地滚动角(Y): {langle}", (32, 886), fontid = "tiny")
showtext(f"本地倾斜角(X): {vangle}", (32, 900), fontid = "tiny")
showtext(f"远程主机时间戳: {remote.jdata['time']}", (32, 914), fontid = "tiny")
showtext(f"航行灯状态: {'打开' if sensors['torch'] else '关闭'}", (32, 928), fontid = "tiny")
showtext(f"瞬时加速度: {sensors['acc']}", (32, 942), fontid = "tiny")
showtext(f"远程信号强度: {sensors['sign']}", (32, 956), fontid = "tiny")
showtext(f"远程 CPU 负载: {sensors['cpuload'] * 100} %", (32, 970), fontid = "tiny")
showtext(f"远程内存占用: {sensors['memload'] * 100} %", (32, 984), fontid = "tiny")
showtext(f"武装: 无", (32, 998), fontid = "tiny")
showtext(f"挂载: 无", (32, 1012), fontid = "tiny")
def warn_layer(text):
if 3 < flamenum % 15 < 12:
showtext(text, (width / 2 - fonts['huge'].render(text, True, colors['warn'], None).get_width() / 2, height / 2 - 150), color=colors['warn'], fontid="huge")
def text_layer():
global sensors, remote_devices
showtext(f"远程主机: {remote.name}", (0, 0))
showtext(f"虚拟视距: {vdist}cm", (0, 24))
showtext(f"水平指示器宽度: {lwidth}cm", (0, 48))
showtext(f"竖直指示器宽度: {round(vwidth)}cm", (0, 72))
oriword = {0: "[N]", 90: "[E]", 180: "[S]", 270: "[W]"}
for i in range(0, 13):
showtext(f'{str(oriword[n] if (n := round(abs(calc_langle2(width * 0.12 + width * 0.76 * i / 12) + sensors["zangle"]))) in oriword.keys() else n).zfill(2)}',
(width * 0.12 + width * 0.76 * i / 12 - 12, height * 0.1 + width * 0.01))
for i in range(0, 9):
showtext(f'{str(round(abs(calc_vangle2(height * 0.25 + height * 0.5 * i / 8) - sensors["yangle"]))).zfill(2)}',
(width * 0.926, height * 0.25 + height * 0.49 * i / 8 - 3), fontid="small")
showtext(f'{str(round(abs(calc_vangle2(height * 0.25 + height * 0.5 * i / 8) - sensors["yangle"]))).zfill(2)}',
(width * 0.064, height * 0.25 + height * 0.49 * i / 8 - 3), fontid="small")
showtext("右副翼 >", (width * 0.95, height * 0.81), fontid="tiny")
showtext(f"{devices['aile_right']}/{round(remote_devices['aile_right'], 1)}", (width * 0.955, height * 0.825), fontid="tiny")
showtext("右尾翼 >", (width * 0.95, height * 0.93), fontid="tiny")
showtext(f"{devices['tail_right']}/{round(remote_devices['tail_right'], 1)}", (width * 0.955, height * 0.915), fontid="tiny")
showtext("左副翼 >", (width * 0.92, height * 0.81), fontid="tiny")
showtext(f"{devices['aile_left']}/{round(remote_devices['aile_left'], 1)}", (width * 0.925, height * 0.825), fontid="tiny")
showtext("左尾翼 >", (width * 0.92, height * 0.93), fontid="tiny")
showtext(f"{devices['tail_left']}/{round(remote_devices['tail_left'], 1)}", (width * 0.925, height * 0.915), fontid="tiny")
showtext("转速", (width * 0.874, height * 0.923), fontid="tiny")
showtext(f"{str(devices['engine_main']).zfill(3)}", (width * 0.8745, height * 0.938), fontid="tiny")
showtext("空速", (width * 0.844, height * 0.923), fontid="tiny")
showtext(f"{str(sensors['speed']).zfill(3)}", (width * 0.8445, height * 0.938), fontid="tiny")
showtext("能量", (width * 0.814, height * 0.923), fontid="tiny")
showtext(f"{str(sensors['battery'] * 100).zfill(2)}%", (width * 0.8145, height * 0.938), fontid="tiny")
def netproc():
while running:
update()
transmit("cmd", cmdgen())
time.sleep(0.05)
if __name__ == "__main__":
vdist = 30 # 虚拟视距
lwidth = 60 # 水平指示器距离
vwidth = lwidth * 0.5 / 0.76 # 竖直指示器距离
# 网络初始化
remote = lib.Net(dest = "127.0.0.1", port = 40808)
# 数据初始化
devices = dict()
vangle = None
langle = None
for i in remote.jdata['devices'].keys():
devices[i] = 0
remote_devices = dict()
for i in remote.jdata['devices'].keys():
remote_devices[i] = 0
sensors = dict()
for i in remote.jdata['sensors'].keys():
sensors[i] = 0
name = remote.name
# 摄像头初始化
if camera_enabled:
camera = cv2.VideoCapture(1)
# 图形初始化
pygame.init()
pygame.display.set_caption(f"Azure 远程终端 - 连接到 {name}")
flamenum = 0
colors = {"main":"white", "remote":"green", "warn":"red"}
fonts = {"medium":pygame.font.Font('src/font.ttf', 20), "big":pygame.font.Font('src/font.ttf', 40), "huge":pygame.font.Font('src/font.ttf', 60), "small":pygame.font.Font('src/font.ttf', 16), "tiny":pygame.font.Font('src/font.ttf', 12)}
height = 1080
width = int(height / 9 * 16)
heightp = 1080
widthp = int(height / 9 * 16)
screen = pygame.display.set_mode((width, height), RESIZABLE)
icon = pygame.image.load("src/icon.ico").convert_alpha()
pygame.display.set_icon(icon)
clock = pygame.time.Clock()
running = True
pygame.mouse.set_visible(False)
pygame.mouse.set_pos([width / 2, height / 2])
f_shootmode = 0
#welcome()
isfullscreen = 0
camera_refresh()
mousepos = (width / 2, height / 2)
np = threading.Thread(target=netproc, name='NetworkProcessing')
np.start()
while running:
for event in pygame.event.get():
if event.type == pygame.QUIT:
running = False
if event.type == pygame.MOUSEMOTION:
#loggin.info(mousepos)
#loggin.info("鼠标: ", event.pos[0] - mousepos[0], event.pos[1] - mousepos[1])
mousepos = event.pos
if event.type == pygame.VIDEORESIZE:
height = event.size[1]
width = event.size[0]
screen = pygame.display.set_mode((width, height), RESIZABLE)
flamenum += 1
if flamenum % 2 == 1:
camera_refresh()
screen.blit(frame_surface, (0, 0))
# 计算
vangle = calc_vangle(mousepos[1])
langle = calc_langle(mousepos[0])
# 常态指示器
showline((width * 0.08, height * 0.75), (width * 0.08, height * 0.25), 2) # 高度指示
showline((width * 0.92, height * 0.75), (width * 0.92, height * 0.25), 2) # 高度指示
showline((width * 0.97, height * 0.86), (width * 0.95, height * 0.86), 2) # 翼面指示 1
showline((width * 0.97, height * 0.90), (width * 0.95, height * 0.90), 2) # 翼面指示 2
showline((width * 0.94, height * 0.86), (width * 0.92, height * 0.86), 2) # 翼面指示 1
showline((width * 0.94, height * 0.90), (width * 0.92, height * 0.90), 2) # 翼面指示 2
showline((width * 0.88, height * 0.1), (width * 0.12, height * 0.1), 2) # 方向指示
showline((width / 2 - 20, height / 2), (width / 2 + 20, height / 2), 1 if not f_shootmode else 3, 'main' if not f_shootmode else 'warn') # 准星指示
showline((width / 2, height / 2 + 20), (width / 2, height / 2 - 20), 1 if not f_shootmode else 3, 'main' if not f_shootmode else 'warn') # 准星指示
for i in range(0, 9):
showline((width * 0.92, height * 0.25 + height * 0.5 * i / 8), (width * 0.91, height * 0.25 + height * 0.5 * i / 8), 2) # 高度指示
showline((width * 0.08, height * 0.25 + height * 0.5 * i / 8), (width * 0.09, height * 0.25 + height * 0.5 * i / 8), 2) # 高度指示
for i in range(0, 13):
showline((width * 0.12 + width * 0.76 * i / 12, height * 0.1), (width * 0.12 + width * 0.76 * i / 12, height * 0.1 + width * 0.01), 2) # 水平指示
# 鼠标复位
# pygame.mouse.set_pos([width / 2, height / 2])
# 指示器
dyna1 = ((width * 0.97, height * 0.86 - width * 0.01 * math.tan(math.radians(vangle)) + width * 0.01 * math.tan(math.radians(langle))),
(width * 0.95, height * 0.86 + width * 0.01 * math.tan(math.radians(vangle)) - width * 0.01 * math.tan(math.radians(langle))))
dyna2 = ((width * 0.97, height * 0.90 - width * 0.01 * math.tan(math.radians(vangle)) + width * 0.01 * math.tan(math.radians(langle))),
(width * 0.95, height * 0.90 + width * 0.01 * math.tan(math.radians(vangle)) - width * 0.01 * math.tan(math.radians(langle))))
dyna3 = ((width * 0.94, height * 0.86 - width * 0.01 * math.tan(math.radians(vangle)) - width * 0.01 * math.tan(math.radians(langle))),
(width * 0.92, height * 0.86 + width * 0.01 * math.tan(math.radians(vangle)) + width * 0.01 * math.tan(math.radians(langle))))
dyna4 = ((width * 0.94, height * 0.90 - width * 0.01 * math.tan(math.radians(vangle)) - width * 0.01 * math.tan(math.radians(langle))),
(width * 0.92, height * 0.90 + width * 0.01 * math.tan(math.radians(vangle)) + width * 0.01 * math.tan(math.radians(langle))))
showline(dyna1[0], dyna1[1], 2) # 翼面指示 1
showline(dyna2[0], dyna2[1], 2) # 翼面指示 2
showline(dyna3[0], dyna3[1], 2) # 翼面指示 1
showline(dyna4[0], dyna4[1], 2) # 翼面指示 2
showline((width * 0.97, height * 0.86 + math.tan(math.radians(remote_devices['aile_left'])) * 0.01 * width),
(width * 0.95, height * 0.86 - math.tan(math.radians(remote_devices['aile_left'])) * 0.01 * width), 2, color="remote") # 翼面指示 1
showline((width * 0.97, height * 0.90 + math.tan(math.radians(remote_devices['aile_right'])) * 0.01 * width),
(width * 0.95, height * 0.90 - math.tan(math.radians(remote_devices['aile_right'])) * 0.01 * width), 2, color="remote") # 翼面指示 1
showline((width * 0.94, height * 0.86 + math.tan(math.radians(remote_devices['tail_left'])) * 0.01 * width),
(width * 0.92, height * 0.86 - math.tan(math.radians(remote_devices['tail_left'])) * 0.01 * width), 2, color="remote") # 翼面指示 1
showline((width * 0.94, height * 0.90 + math.tan(math.radians(remote_devices['tail_right'])) * 0.01 * width),
(width * 0.92, height * 0.90 - math.tan(math.radians(remote_devices['tail_right'])) * 0.01 * width), 2, color="remote") # 翼面指示 1
showline((width * 0.88, height * 0.92), (width * 0.88, height * 0.92 - devices['engine_main']), 20, color="main") # 转速指示 1
showline((width * 0.88, height * 0.92), (width * 0.88, height * 0.92 - remote_devices['engine_main']), 16, color="remote") # 转速指示 2
showline((width * 0.849, height * 0.92), (width * 0.849, height * 0.92 - sensors["speed"]), 20, color="remote") # 空速指示 1
showline((width * 0.82, height * 0.92), (width * 0.82, height * 0.92 - 100), 20, color="main") # 能量指示 2
showline((width * 0.82, height * 0.92), (width * 0.82, height * 0.92 - sensors["battery"] * 100), 16, color="remote") # 能量指示 1
devices['aile_left'] = calc_pair2angle(dyna1)
devices['aile_right'] = calc_pair2angle(dyna2)
devices['tail_left'] = calc_pair2angle(dyna3)
devices['tail_right'] = calc_pair2angle(dyna4)
text_layer()
# 键盘事件
keys = pygame.key.get_pressed()
if keys[pygame.K_ESCAPE]:
running = 0
if keys[pygame.K_r]:
pygame.mouse.set_pos([width / 2, height / 2])
if keys[pygame.K_w]:
pygame.mouse.set_pos([mousepos[0], mousepos[1] + 3])
if keys[pygame.K_s]:
pygame.mouse.set_pos([mousepos[0], mousepos[1] - 3])
if keys[pygame.K_a]:
pygame.mouse.set_pos([mousepos[0] - 3, mousepos[1]])
if keys[pygame.K_d]:
pygame.mouse.set_pos([mousepos[0] + 3, mousepos[1]])
if keys[pygame.K_LSHIFT]:
devices['engine_main'] += 1
if keys[pygame.K_LCTRL]:
devices['engine_main'] -= 1
if keys[pygame.K_1]:
warn_layer("失速警告")
if keys[pygame.K_2]:
warn_layer("失控")
if keys[pygame.K_3]:
warn_layer("通讯异常")
if keys[pygame.K_4]:
warn_layer("不明硬件损毁")
if keys[pygame.K_5]:
warn_layer("紧急重启")
if keys[pygame.K_6]:
warn_layer("紧急停机")
if keys[pygame.K_7]:
warn_layer("紧急关闭")
if keys[pygame.K_8]:
warn_layer("紧急过载")
if keys[pygame.K_9]:
warn_layer("操纵面失控")
if keys[pygame.K_0]:
warn_layer("引擎失控")
if keys[pygame.K_F11]:
if not isfullscreen:
isfullscreen = True
width = widthp
height = heightp
SIZE = width, height = pygame.display.list_modes()[0]
screen = pygame.display.set_mode(SIZE, FULLSCREEN)
else:
isfullscreen = False
screen = pygame.display.set_mode((width, height), RESIZABLE)
if keys[pygame.K_b]:
colors["main"] = "white"
if keys[pygame.K_n]:
colors["main"] = "blue"
if keys[pygame.K_m]:
colors["main"] = "green"
if keys[pygame.K_v]:
colors["main"] = "red"
# 文字显示
# debug
debug_ui()
pygame.draw.circle(screen, colors['main' if not f_shootmode else 'warn'], mousepos, 2)
pygame.draw.circle(screen, colors['main'], mousepos, 20, 3) if not f_shootmode else ''
# flip() the display to put your work on screen
pygame.display.flip()
showline((width * 0.88, height * 0.92), (width * 0.88, height * 0.92 - devices['engine_main']), 20) # 转速指示 1
showline((width * 0.88, height * 0.92), (width * 0.88, height * 0.92 - remote_devices['engine_main']), 16, color="remote") # 转速指示 2
showline((width * 0.849, height * 0.92), (width * 0.849, height * 0.92 - sensors['speed']), 20, color="remote") # 空速指示 2
showline((width * 0.88, height * 0.92), (width * 0.88, height * 0.92 - devices['engine_main']), 20) # 转速指示 1
showline((width * 0.88, height * 0.92), (width * 0.88, height * 0.92 - remote_devices['engine_main']), 16, color="remote") # 转速指示 2
showline((width * 0.849, height * 0.92), (width * 0.849, height * 0.92 - sensors['speed']), 20, color="remote") # 空速指示 2
dt = clock.tick(60) / 1000
np.join()
pygame.quit()

View File

@ -0,0 +1,191 @@
from os import environ
environ['pg_HIDE_SUPPORT_PROMPT'] = '1'
import pygame as pg
def st(text, pos, color = 'main', fontid = "medium"):
db_text = fonts[fontid].render(text, 0 if fontid == "tiny" else 1, colors[color], None)
screen.blit(db_text, pos)
def sl(pos1, pos2, w = 2, color = 'main'):
pg.draw.line(screen, colors[color], pos1, pos2, w)
def debug_ui():
global sensors
st(f"远程方位角(Z): {sensors['zangle']}", (32, 844), fontid = "tiny")
st(f"远程滚动角(Y): {sensors['yangle']}", (32, 858), fontid = "tiny")
st(f"远程倾斜角(X): {sensors['xangle']}", (32, 872), fontid = "tiny")
st(f"本地滚动角(Y): {langle}", (32, 886), fontid = "tiny")
st(f"本地倾斜角(X): {vangle}", (32, 900), fontid = "tiny")
def warn_layer(text):
if 3 < flamenum % 15 < 12:
st(text, (w / 2 - fonts['huge'].render(text, True, colors['warn'], None).get_w() / 2, h / 2 - 150), color=colors['warn'], fontid="huge")
def text_layer():
global sensors, rdev
st(f"远程主机: {remote.name}", (0, 0))
st(f"虚拟视距: {vdist}cm", (0, 24))
st(f"水平指示器宽度: {lw}cm", (0, 48))
st(f"竖直指示器宽度: {round(vw)}cm", (0, 72))
oriword = {0: "[N]", 90: "[E]", 180: "[S]", 270: "[W]"}
for i in range(0, 13):
st(f'{str(oriword[n] if (n := round(abs(calc_langle2(w * 0.12 + w * 0.76 * i / 12) + sensors["zangle"]))) in oriword.keys() else n).zfill(2)}',
(w * 0.12 + w * 0.76 * i / 12 - 12, h * 0.1 + w * 0.01))
for i in range(0, 9):
st(f'{str(round(abs(calc_vangle2(h * 0.25 + h * 0.5 * i / 8) - sensors["yangle"]))).zfill(2)}',
(w * 0.926, h * 0.25 + h * 0.49 * i / 8 - 3), fontid="small")
st(f'{str(round(abs(calc_vangle2(h * 0.25 + h * 0.5 * i / 8) - sensors["yangle"]))).zfill(2)}',
(w * 0.064, h * 0.25 + h * 0.49 * i / 8 - 3), fontid="small")
st("右副翼 >", (w * 0.95, h * 0.81), fontid="tiny")
st(f"{dev['aile_right']}/{round(rdev['aile_right'], 1)}", (w * 0.955, h * 0.825), fontid="tiny")
st("右尾翼 >", (w * 0.95, h * 0.93), fontid="tiny")
st(f"{dev['tail_right']}/{round(rdev['tail_right'], 1)}", (w * 0.955, h * 0.915), fontid="tiny")
st("左副翼 >", (w * 0.92, h * 0.81), fontid="tiny")
st(f"{dev['aile_left']}/{round(rdev['aile_left'], 1)}", (w * 0.925, h * 0.825), fontid="tiny")
st("左尾翼 >", (w * 0.92, h * 0.93), fontid="tiny")
st(f"{dev['tail_left']}/{round(rdev['tail_left'], 1)}", (w * 0.925, h * 0.915), fontid="tiny")
st("转速", (w * 0.874, h * 0.923), fontid="tiny")
st(f"{str(dev['engine_main']).zfill(3)}", (w * 0.8745, h * 0.938), fontid="tiny")
st("空速", (w * 0.844, h * 0.923), fontid="tiny")
st(f"{str(sensors['speed']).zfill(3)}", (w * 0.8445, h * 0.938), fontid="tiny")
st("能量", (w * 0.814, h * 0.923), fontid="tiny")
st(f"{str(sensors['battery'] * 100).zfill(2)}%", (w * 0.8145, h * 0.938), fontid="tiny")
def netproc():
while running:
update()
transmit("cmd", cmdgen())
time.sleep(0.05)
if __name__ == "__main__":
vdist = 30 # 虚拟视距
lw = 60 # 水平指示器距离
vw = lw * 0.5 / 0.76 # 竖直指示器距离
pg.init()
pg.display.set_caption(f"Azure 远程终端 - 连接到 {name}")
flamenum = 0
colors = {"main":"white", "remote":"green", "warn":"red"}
fonts = {"medium":pg.font.Font('src/font.ttf', 20), "big":pg.font.Font('src/font.ttf', 40), "huge":pg.font.Font('src/font.ttf', 60), "small":pg.font.Font('src/font.ttf', 16), "tiny":pg.font.Font('src/font.ttf', 12)}
h = 1080
w = int(h / 9 * 16)
hp = 1080
wp = int(h / 9 * 16)
screen = pg.display.set_mode((w, h), RESIZABLE)
icon = pg.image.load("src/icon.ico").convert_alpha()
pg.display.set_icon(icon)
clock = pg.time.Clock()
running = True
pg.mouse.set_visible(False)
pg.mouse.set_pos([w / 2, h / 2])
f_shootmode = 0
#welcome()
isfullscreen = 0
mousepos = (w / 2, h / 2)
np = threading.Thread(target=netproc, name='NetworkProcessing')
np.start()
while running:
for event in pg.event.get():
if event.type == pg.QUIT:
running = False
if event.type == pg.MOUSEMOTION:
#loggin.info(mousepos)
#loggin.info("鼠标: ", event.pos[0] - mousepos[0], event.pos[1] - mousepos[1])
mousepos = event.pos
if event.type == pg.VIDEORESIZE:
h = event.size[1]
w = event.size[0]
screen = pg.display.set_mode((w, h), RESIZABLE)
flamenum += 1
if flamenum % 2 == 1:
camera_refresh()
screen.blit(frame_surface, (0, 0))
# 计算
vangle = calc_vangle(mousepos[1])
langle = calc_langle(mousepos[0])
# 常态指示器
sl((w * 0.08, h * 0.75), (w * 0.08, h * 0.25), 2) # 高度指示
sl((w * 0.92, h * 0.75), (w * 0.92, h * 0.25), 2) # 高度指示
sl((w * 0.97, h * 0.86), (w * 0.95, h * 0.86), 2) # 翼面指示 1
sl((w * 0.97, h * 0.90), (w * 0.95, h * 0.90), 2) # 翼面指示 2
sl((w * 0.94, h * 0.86), (w * 0.92, h * 0.86), 2) # 翼面指示 1
sl((w * 0.94, h * 0.90), (w * 0.92, h * 0.90), 2) # 翼面指示 2
sl((w * 0.88, h * 0.1), (w * 0.12, h * 0.1), 2) # 方向指示
sl((w / 2 - 20, h / 2), (w / 2 + 20, h / 2), 1 if not f_shootmode else 3, 'main' if not f_shootmode else 'warn') # 准星指示
sl((w / 2, h / 2 + 20), (w / 2, h / 2 - 20), 1 if not f_shootmode else 3, 'main' if not f_shootmode else 'warn') # 准星指示
for i in range(0, 9):
sl((w * 0.92, h * 0.25 + h * 0.5 * i / 8), (w * 0.91, h * 0.25 + h * 0.5 * i / 8), 2) # 高度指示
sl((w * 0.08, h * 0.25 + h * 0.5 * i / 8), (w * 0.09, h * 0.25 + h * 0.5 * i / 8), 2) # 高度指示
for i in range(0, 13):
sl((w * 0.12 + w * 0.76 * i / 12, h * 0.1), (w * 0.12 + w * 0.76 * i / 12, h * 0.1 + w * 0.01), 2) # 水平指示
# 鼠标复位
# pg.mouse.set_pos([w / 2, h / 2])
# 指示器
dya1 = ((w * 0.97, h * 0.86 - w * 0.01 * tan(rad(vangle)) + w * 0.01 * tan(rad(langle))),
(w * 0.95, h * 0.86 + w * 0.01 * tan(rad(vangle)) - w * 0.01 * tan(rad(langle))))
dya2 = ((w * 0.97, h * 0.90 - w * 0.01 * tan(rad(vangle)) + w * 0.01 * tan(rad(langle))),
(w * 0.95, h * 0.90 + w * 0.01 * tan(rad(vangle)) - w * 0.01 * tan(rad(langle))))
sl(dya1[0], dya1[1], 2) # 翼面指示 1
sl(dya2[0], dya2[1], 2) # 翼面指示 2
sl(dya3[0], dya3[1], 2) # 翼面指示 1
sl(dya4[0], dya4[1], 2) # 翼面指示 2
sl((w * 0.97, h * 0.86 + tan(rad(rdev['aile_left'])) * 0.01 * w),
(w * 0.92, h * 0.90 - tan(rad(rdev['tail_right'])) * 0.01 * w), 2, color="remote") # 翼面指示 1
sl((w * 0.88, h * 0.92), (w * 0.88, h * 0.92 - dev['engine_main']), 20, color="main") # 转速指示 1
sl((w * 0.82, h * 0.92), (w * 0.82, h * 0.92 - sensors["battery"] * 100), 16, color="remote") # 能量指示 1
dev['aile_left'] = calc_pair2angle(dya1)
dev['aile_right'] = calc_pair2angle(dya2)
dev['tail_left'] = calc_pair2angle(dya3)
dev['tail_right'] = calc_pair2angle(dya4)
text_layer()
# 键盘事件
keys = pg.key.get_pressed()
if keys[pg.K_ESCAPE]:
running = 0
if keys[pg.K_r]:
pg.mouse.set_pos([w / 2, h / 2])
if keys[pg.K_w]:
pg.mouse.set_pos([mousepos[0], mousepos[1] + 3])
if keys[pg.K_s]:
pg.mouse.set_pos([mousepos[0], mousepos[1] - 3])
if keys[pg.K_a]:
pg.mouse.set_pos([mousepos[0] - 3, mousepos[1]])
if keys[pg.K_d]:
pg.mouse.set_pos([mousepos[0] + 3, mousepos[1]])
if keys[pg.K_LSHIFT]:
dev['engine_main'] += 1
if keys[pg.K_LCTRL]:
dev['engine_main'] -= 1
if keys[pg.K_1]:
warn_layer("失速警告")
if keys[pg.K_F11]:
if not isfullscreen:
isfullscreen = True
w = wp
h = hp
SIZE = w, h = pg.display.list_modes()[0]
screen = pg.display.set_mode(SIZE, FULLSCREEN)
else:
isfullscreen = False
screen = pg.display.set_mode((w, h), RESIZABLE)
# 文字显示
# debug
debug_ui()
pg.draw.circle(screen, colors['main' if not f_shootmode else 'warn'], mousepos, 2)
pg.draw.circle(screen, colors['main'], mousepos, 20, 3) if not f_shootmode else ''
# flip() the display to put your work on screen
pg.display.flip()
sl((w * 0.88, h * 0.92), (w * 0.88, h * 0.92 - dev['engine_main']), 20) # 转速指示 1
dt = clock.tick(60) / 1000
np.join()
pg.quit()

View File

@ -0,0 +1,363 @@
from os import environ
environ['PYGAME_HIDE_SUPPORT_PROMPT'] = '1'
import pygame
from pygame.locals import *
import cv2
import client_lib as lib
import math
import time
import threading
import logging
camera_enabled = 0
def camera_refresh():
global frame_surface
if camera_enabled:
frame = camera.read()[1]
frame_rgb = cv2.resize(cv2.flip(cv2.rotate(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB), cv2.ROTATE_90_CLOCKWISE), 1), (height, width))
frame_surface = pygame.surfarray.make_surface(frame_rgb)
else:
frame_surface = pygame.Surface((width, height), pygame.SRCALPHA)
frame_surface.fill((0, 0, 0, 250)) # 将表面填充为完全透明
def welcome():
for i in range(0, 120):
screen.fill("black")
text = fonts['huge'].render("Initialize Azure Network BVLOS Flighting Controlling System", True, colors['main'], None)
screen.blit(text, (width / 2 - text.get_width() / 2, height / 2 - 150))
text = fonts['big'].render(f"Remote connection: {remote.name}", True, colors['main'], None)
screen.blit(text, (width / 2 - text.get_width() / 2, height / 2))
pygame.display.flip()
clock.tick(60)
def cmdgen():
global devices
cmd = ""
for i in devices.keys():
word = ""
if remote.jdata["devices"][i]['type'] == "Flank":
word = "angle"
if remote.jdata["devices"][i]['type'] == "Engine":
word = "speed"
cmd += f"hw['{i}'].set_{word}({devices[i]})\n"
# loggin.info(cmd)
return cmd
def transmit(type, cmd):
msg = dict()
msg['type'] = type
msg['cmd'] = cmd
msg['time'] = time.asctime()
remote.jsend(msg)
def update():
global remote_devices, sensors
remote.refresh()
types = {'Flank':'angle', 'Engine':'speed'}
for i in devices.keys():
remote_devices[i] = remote.jdata['devices'][i][types[remote.jdata['devices'][i]['type']]]
for i in sensors.keys():
sensors[i] = remote.jdata['sensors'][i]
def calc_pair2angle(dyna):
tan = (dyna[0][1] - dyna[1][1]) / (dyna[0][0] - dyna[1][0])
return round(math.degrees(math.atan(tan)), 1)
def calc_langle(posx):
if (width / 2 - 30 < mousepos[0] < width / 2 + 30) and (height / 2 - 30 < mousepos[1] < height / 2 + 30):
global f_shootmode
f_shootmode = 1
return 0
f_shootmode = 0
a = abs(posx - width / 2) / (width * 0.76) * lwidth # 底边
b = vdist
angle_a = math.atan(a / b)
angle_a = math.degrees(angle_a)
if posx < width / 2:
angle_a = -angle_a
return angle_a
def calc_vangle(posy):
if (width / 2 - 30 < mousepos[0] < width / 2 + 30) and (height / 2 - 30 < mousepos[1] < height / 2 + 30):
global f_shootmode
f_shootmode = 1
return 0
f_shootmode = 0
a = abs(posy - height / 2) / (height * 0.5) * vwidth # 底边
b = vdist
angle_a = math.atan(a / b)
angle_a = math.degrees(angle_a)
if posy < height / 2:
angle_a = -angle_a
return angle_a
def calc_langle2(posx):
a = abs(posx - width / 2) / (width * 0.76) * lwidth # 底边
b = vdist
angle_a = math.atan(a / b)
angle_a = math.degrees(angle_a)
if posx < width / 2:
angle_a = -angle_a
return angle_a
def calc_vangle2(posy):
a = abs(posy - height / 2) / (height * 0.5) * vwidth # 底边
b = vdist
angle_a = math.atan(a / b)
angle_a = math.degrees(angle_a)
if posy < height / 2:
angle_a = -angle_a
return angle_a
def showtext(text, pos, color = 'main', fontid = "medium"):
db_text = fonts[fontid].render(text, 0 if fontid == "tiny" else 1, colors[color], None)
screen.blit(db_text, pos)
def showline(pos1, pos2, width = 2, color = 'main'):
pygame.draw.line(screen, colors[color], pos1, pos2, width)
def debug_ui():
global sensors
showtext(f"远程方位角(Z): {sensors['zangle']}", (32, 844), fontid = "tiny")
showtext(f"远程滚动角(Y): {sensors['yangle']}", (32, 858), fontid = "tiny")
showtext(f"远程倾斜角(X): {sensors['xangle']}", (32, 872), fontid = "tiny")
showtext(f"本地滚动角(Y): {langle}", (32, 886), fontid = "tiny")
showtext(f"本地倾斜角(X): {vangle}", (32, 900), fontid = "tiny")
showtext(f"远程主机时间戳: {remote.jdata['time']}", (32, 914), fontid = "tiny")
showtext(f"航行灯状态: {'打开' if sensors['torch'] else '关闭'}", (32, 928), fontid = "tiny")
showtext(f"瞬时加速度: {sensors['acc']}", (32, 942), fontid = "tiny")
showtext(f"远程信号强度: {sensors['sign']}", (32, 956), fontid = "tiny")
showtext(f"远程 CPU 负载: {sensors['cpuload'] * 100} %", (32, 970), fontid = "tiny")
showtext(f"远程内存占用: {sensors['memload'] * 100} %", (32, 984), fontid = "tiny")
showtext(f"武装: 无", (32, 998), fontid = "tiny")
showtext(f"挂载: 无", (32, 1012), fontid = "tiny")
def warn_layer(text):
if 3 < flamenum % 15 < 12:
showtext(text, (width / 2 - fonts['huge'].render(text, True, colors['warn'], None).get_width() / 2, height / 2 - 150), color=colors['warn'], fontid="huge")
def text_layer():
global sensors, remote_devices
showtext(f"远程主机: {remote.name}", (0, 0))
showtext(f"虚拟视距: {vdist}cm", (0, 24))
showtext(f"水平指示器宽度: {lwidth}cm", (0, 48))
showtext(f"竖直指示器宽度: {round(vwidth)}cm", (0, 72))
oriword = {0: "[N]", 90: "[E]", 180: "[S]", 270: "[W]"}
for i in range(0, 13):
showtext(f'{str(oriword[n] if (n := round(abs(calc_langle2(width * 0.12 + width * 0.76 * i / 12) + sensors["zangle"]))) in oriword.keys() else n).zfill(2)}',
(width * 0.12 + width * 0.76 * i / 12 - 12, height * 0.1 + width * 0.01))
for i in range(0, 9):
showtext(f'{str(round(abs(calc_vangle2(height * 0.25 + height * 0.5 * i / 8) - sensors["yangle"]))).zfill(2)}',
(width * 0.926, height * 0.25 + height * 0.49 * i / 8 - 3), fontid="small")
showtext(f'{str(round(abs(calc_vangle2(height * 0.25 + height * 0.5 * i / 8) - sensors["yangle"]))).zfill(2)}',
(width * 0.064, height * 0.25 + height * 0.49 * i / 8 - 3), fontid="small")
showtext("右副翼 >", (width * 0.95, height * 0.81), fontid="tiny")
showtext(f"{devices['aile_right']}/{round(remote_devices['aile_right'], 1)}", (width * 0.955, height * 0.825), fontid="tiny")
showtext("右尾翼 >", (width * 0.95, height * 0.93), fontid="tiny")
showtext(f"{devices['tail_right']}/{round(remote_devices['tail_right'], 1)}", (width * 0.955, height * 0.915), fontid="tiny")
showtext("左副翼 >", (width * 0.92, height * 0.81), fontid="tiny")
showtext(f"{devices['aile_left']}/{round(remote_devices['aile_left'], 1)}", (width * 0.925, height * 0.825), fontid="tiny")
showtext("左尾翼 >", (width * 0.92, height * 0.93), fontid="tiny")
showtext(f"{devices['tail_left']}/{round(remote_devices['tail_left'], 1)}", (width * 0.925, height * 0.915), fontid="tiny")
showtext("转速", (width * 0.874, height * 0.923), fontid="tiny")
showtext(f"{str(devices['engine_main']).zfill(3)}", (width * 0.8745, height * 0.938), fontid="tiny")
showtext("空速", (width * 0.844, height * 0.923), fontid="tiny")
showtext(f"{str(sensors['speed']).zfill(3)}", (width * 0.8445, height * 0.938), fontid="tiny")
showtext("能量", (width * 0.814, height * 0.923), fontid="tiny")
showtext(f"{str(sensors['battery'] * 100).zfill(2)}%", (width * 0.8145, height * 0.938), fontid="tiny")
def netproc():
while running:
update()
transmit("cmd", cmdgen())
time.sleep(0.05)
if __name__ == "__main__":
vdist = 30 # 虚拟视距
lwidth = 60 # 水平指示器距离
vwidth = lwidth * 0.5 / 0.76 # 竖直指示器距离
# 网络初始化
remote = lib.Net(dest = "127.0.0.1", port = 40808)
# 数据初始化
devices = dict()
vangle = None
langle = None
for i in remote.jdata['devices'].keys():
devices[i] = 0
remote_devices = dict()
for i in remote.jdata['devices'].keys():
remote_devices[i] = 0
sensors = dict()
for i in remote.jdata['sensors'].keys():
sensors[i] = 0
name = remote.name
# 摄像头初始化
if camera_enabled:
camera = cv2.VideoCapture(1)
# 图形初始化
pygame.init()
pygame.display.set_caption(f"Azure 远程终端 - 连接到 {name}")
flamenum = 0
colors = {"main":"white", "remote":"green", "warn":"red"}
fonts = {"medium":pygame.font.Font('src/font.ttf', 20), "big":pygame.font.Font('src/font.ttf', 40), "huge":pygame.font.Font('src/font.ttf', 60), "small":pygame.font.Font('src/font.ttf', 16), "tiny":pygame.font.Font('src/font.ttf', 12)}
height = 1080
width = int(height / 9 * 16)
heightp = 1080
widthp = int(height / 9 * 16)
screen = pygame.display.set_mode((width, height), RESIZABLE)
icon = pygame.image.load("src/icon.ico").convert_alpha()
pygame.display.set_icon(icon)
clock = pygame.time.Clock()
running = True
pygame.mouse.set_visible(False)
pygame.mouse.set_pos([width / 2, height / 2])
f_shootmode = 0
#welcome()
isfullscreen = 0
camera_refresh()
mousepos = (width / 2, height / 2)
np = threading.Thread(target=netproc, name='NetworkProcessing')
np.start()
while running:
for event in pygame.event.get():
if event.type == pygame.QUIT:
running = False
if event.type == pygame.MOUSEMOTION:
#loggin.info(mousepos)
#loggin.info("鼠标: ", event.pos[0] - mousepos[0], event.pos[1] - mousepos[1])
mousepos = event.pos
if event.type == pygame.VIDEORESIZE:
height = event.size[1]
width = event.size[0]
screen = pygame.display.set_mode((width, height), RESIZABLE)
flamenum += 1
if flamenum % 2 == 1:
camera_refresh()
screen.blit(frame_surface, (0, 0))
# 计算
vangle = calc_vangle(mousepos[1])
langle = calc_langle(mousepos[0])
# 常态指示器
showline((width * 0.08, height * 0.75), (width * 0.08, height * 0.25), 2) # 高度指示
showline((width * 0.92, height * 0.75), (width * 0.92, height * 0.25), 2) # 高度指示
showline((width * 0.97, height * 0.86), (width * 0.95, height * 0.86), 2) # 翼面指示 1
showline((width * 0.97, height * 0.90), (width * 0.95, height * 0.90), 2) # 翼面指示 2
showline((width * 0.94, height * 0.86), (width * 0.92, height * 0.86), 2) # 翼面指示 1
showline((width * 0.94, height * 0.90), (width * 0.92, height * 0.90), 2) # 翼面指示 2
showline((width * 0.88, height * 0.1), (width * 0.12, height * 0.1), 2) # 方向指示
showline((width / 2 - 20, height / 2), (width / 2 + 20, height / 2), 1 if not f_shootmode else 3, 'main' if not f_shootmode else 'warn') # 准星指示
showline((width / 2, height / 2 + 20), (width / 2, height / 2 - 20), 1 if not f_shootmode else 3, 'main' if not f_shootmode else 'warn') # 准星指示
for i in range(0, 9):
showline((width * 0.92, height * 0.25 + height * 0.5 * i / 8), (width * 0.91, height * 0.25 + height * 0.5 * i / 8), 2) # 高度指示
showline((width * 0.08, height * 0.25 + height * 0.5 * i / 8), (width * 0.09, height * 0.25 + height * 0.5 * i / 8), 2) # 高度指示
for i in range(0, 13):
showline((width * 0.12 + width * 0.76 * i / 12, height * 0.1), (width * 0.12 + width * 0.76 * i / 12, height * 0.1 + width * 0.01), 2) # 水平指示
# 鼠标复位
# pygame.mouse.set_pos([width / 2, height / 2])
# 指示器
dyna1 = ((width * 0.97, height * 0.86 - width * 0.01 * math.tan(math.radians(vangle)) + width * 0.01 * math.tan(math.radians(langle))),
(width * 0.95, height * 0.86 + width * 0.01 * math.tan(math.radians(vangle)) - width * 0.01 * math.tan(math.radians(langle))))
dyna2 = ((width * 0.97, height * 0.90 - width * 0.01 * math.tan(math.radians(vangle)) + width * 0.01 * math.tan(math.radians(langle))),
(width * 0.95, height * 0.90 + width * 0.01 * math.tan(math.radians(vangle)) - width * 0.01 * math.tan(math.radians(langle))))
dyna3 = ((width * 0.94, height * 0.86 - width * 0.01 * math.tan(math.radians(vangle)) - width * 0.01 * math.tan(math.radians(langle))),
(width * 0.92, height * 0.86 + width * 0.01 * math.tan(math.radians(vangle)) + width * 0.01 * math.tan(math.radians(langle))))
dyna4 = ((width * 0.94, height * 0.90 - width * 0.01 * math.tan(math.radians(vangle)) - width * 0.01 * math.tan(math.radians(langle))),
(width * 0.92, height * 0.90 + width * 0.01 * math.tan(math.radians(vangle)) + width * 0.01 * math.tan(math.radians(langle))))
showline(dyna1[0], dyna1[1], 2) # 翼面指示 1
showline(dyna2[0], dyna2[1], 2) # 翼面指示 2
showline(dyna3[0], dyna3[1], 2) # 翼面指示 1
showline(dyna4[0], dyna4[1], 2) # 翼面指示 2
showline((width * 0.97, height * 0.86 + math.tan(math.radians(remote_devices['aile_left'])) * 0.01 * width),
(width * 0.95, height * 0.86 - math.tan(math.radians(remote_devices['aile_left'])) * 0.01 * width), 2, color="remote") # 翼面指示 1
showline((width * 0.97, height * 0.90 + math.tan(math.radians(remote_devices['aile_right'])) * 0.01 * width),
(width * 0.95, height * 0.90 - math.tan(math.radians(remote_devices['aile_right'])) * 0.01 * width), 2, color="remote") # 翼面指示 1
showline((width * 0.94, height * 0.86 + math.tan(math.radians(remote_devices['tail_left'])) * 0.01 * width),
(width * 0.92, height * 0.86 - math.tan(math.radians(remote_devices['tail_left'])) * 0.01 * width), 2, color="remote") # 翼面指示 1
showline((width * 0.94, height * 0.90 + math.tan(math.radians(remote_devices['tail_right'])) * 0.01 * width),
(width * 0.92, height * 0.90 - math.tan(math.radians(remote_devices['tail_right'])) * 0.01 * width), 2, color="remote") # 翼面指示 1
showline((width * 0.88, height * 0.92), (width * 0.88, height * 0.92 - devices['engine_main']), 20, color="main") # 转速指示 1
showline((width * 0.88, height * 0.92), (width * 0.88, height * 0.92 - remote_devices['engine_main']), 16, color="remote") # 转速指示 2
showline((width * 0.849, height * 0.92), (width * 0.849, height * 0.92 - sensors["speed"]), 20, color="remote") # 空速指示 1
showline((width * 0.82, height * 0.92), (width * 0.82, height * 0.92 - 100), 20, color="main") # 能量指示 2
showline((width * 0.82, height * 0.92), (width * 0.82, height * 0.92 - sensors["battery"] * 100), 16, color="remote") # 能量指示 1
devices['aile_left'] = calc_pair2angle(dyna1)
devices['aile_right'] = calc_pair2angle(dyna2)
devices['tail_left'] = calc_pair2angle(dyna3)
devices['tail_right'] = calc_pair2angle(dyna4)
text_layer()
# 键盘事件
keys = pygame.key.get_pressed()
if keys[pygame.K_ESCAPE]:
running = 0
if keys[pygame.K_r]:
pygame.mouse.set_pos([width / 2, height / 2])
if keys[pygame.K_w]:
pygame.mouse.set_pos([mousepos[0], mousepos[1] + 3])
if keys[pygame.K_s]:
pygame.mouse.set_pos([mousepos[0], mousepos[1] - 3])
if keys[pygame.K_a]:
pygame.mouse.set_pos([mousepos[0] - 3, mousepos[1]])
if keys[pygame.K_d]:
pygame.mouse.set_pos([mousepos[0] + 3, mousepos[1]])
if keys[pygame.K_LSHIFT]:
devices['engine_main'] += 1
if keys[pygame.K_LCTRL]:
devices['engine_main'] -= 1
if keys[pygame.K_1]:
warn_layer("失速警告")
if keys[pygame.K_2]:
warn_layer("失控")
if keys[pygame.K_3]:
warn_layer("通讯异常")
if keys[pygame.K_4]:
warn_layer("不明硬件损毁")
if keys[pygame.K_5]:
warn_layer("紧急重启")
if keys[pygame.K_6]:
warn_layer("紧急停机")
if keys[pygame.K_7]:
warn_layer("紧急关闭")
if keys[pygame.K_8]:
warn_layer("紧急过载")
if keys[pygame.K_9]:
warn_layer("操纵面失控")
if keys[pygame.K_0]:
warn_layer("引擎失控")
if keys[pygame.K_F11]:
if not isfullscreen:
isfullscreen = True
width = widthp
height = heightp
SIZE = width, height = pygame.display.list_modes()[0]
screen = pygame.display.set_mode(SIZE, FULLSCREEN)
else:
isfullscreen = False
screen = pygame.display.set_mode((width, height), RESIZABLE)
if keys[pygame.K_b]:
colors["main"] = "white"
if keys[pygame.K_n]:
colors["main"] = "blue"
if keys[pygame.K_m]:
colors["main"] = "green"
if keys[pygame.K_v]:
colors["main"] = "red"
# 文字显示
# debug
debug_ui()
pygame.draw.circle(screen, colors['main' if not f_shootmode else 'warn'], mousepos, 2)
pygame.draw.circle(screen, colors['main'], mousepos, 20, 3) if not f_shootmode else ''
# flip() the display to put your work on screen
pygame.display.flip()
showline((width * 0.88, height * 0.92), (width * 0.88, height * 0.92 - devices['engine_main']), 20) # 转速指示 1
showline((width * 0.88, height * 0.92), (width * 0.88, height * 0.92 - remote_devices['engine_main']), 16, color="remote") # 转速指示 2
showline((width * 0.849, height * 0.92), (width * 0.849, height * 0.92 - sensors['speed']), 20, color="remote") # 空速指示 2
showline((width * 0.88, height * 0.92), (width * 0.88, height * 0.92 - devices['engine_main']), 20) # 转速指示 1
showline((width * 0.88, height * 0.92), (width * 0.88, height * 0.92 - remote_devices['engine_main']), 16, color="remote") # 转速指示 2
showline((width * 0.849, height * 0.92), (width * 0.849, height * 0.92 - sensors['speed']), 20, color="remote") # 空速指示 2
dt = clock.tick(60) / 1000
np.join()
pygame.quit()

View File

@ -0,0 +1,49 @@
import socket
import json
import logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
class Net(object):
data = None
jdata = None
name = None
isfirst = 0
def __init__(self, dest="127.0.0.1", port=40808):
logging.info("Start remote host communcation")
self.dest = dest
self.port = port
self.remote = socket.socket()
self.remote.connect((dest, port))
self.data: str = self.remote.recv(2048).decode("UTF-8")
self.jdata = json.loads(self.data)
first = json.loads(self.data)
self.name = first["name"]
logging.info(f"Connected to {self.name}")
self.isfirst = 1
def send(self, msg):
size = len(msg.encode())
self.remote.send(msg.encode("UTF-8").ljust(2048 - size))
self.jdata = json.loads(self.data)
def recv(self):
self.data: str = self.remote.recv(2048).decode("UTF-8")
self.jdata = json.loads(self.data)
return self.data
def jsend(self, msg):
msg = json.dumps(msg) # 状态回传
size = len(msg.encode())
self.remote.send(msg.encode("UTF-8").ljust(2048 - size))
self.jdata = json.loads(self.data)
print("发送",msg)
def refresh(self):
if self.isfirst == 1:
self.isfirst = 0
return self.jdata
self.data: str = self.remote.recv(2048).decode("UTF-8")
self.jdata = json.loads(self.data.encode("UTF-8"))
return

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 66 KiB

View File

@ -0,0 +1,81 @@
import pygame
import math
class Line:
def __init__(self, screen, method, pos, size, maincolor, bgcolor):
self.screen = screen
self.method = method
self.start_pos = pos
self.length = size
self.color = maincolor
self.bgcolor = bgcolor
self.angle = 0 # Angle in degrees
self.end_pos = self.calculate_end_pos()
def calculate_end_pos(self):
"""Calculate the end position of the line based on the angle and length."""
x_offset = self.length * math.cos(math.radians(self.angle))
y_offset = self.length * math.sin(math.radians(self.angle))
return (self.start_pos[0] + x_offset, self.start_pos[1] + y_offset)
def rotate(self, degree):
"""Rotate the line around its start position."""
self.angle = (self.angle + degree) % 360
self.end_pos = self.calculate_end_pos()
def resize(self, new_length):
"""Change the length of the line."""
self.length = new_length
self.end_pos = self.calculate_end_pos()
def recolor(self, color):
"""Change the color permanently."""
self.color = color
def recolor_tmp(self, color, time_):
"""Change the color temporarily."""
original_color = self.color
self.color = color
pygame.time.set_timer(pygame.USEREVENT, time_ * 1000) # Set a timer for the specified time
# Event handling for reverting color
def revert_color(event):
if event.type == pygame.USEREVENT:
self.color = original_color
pygame.time.set_timer(pygame.USEREVENT, 0) # Stop the timer
return revert_color
def move(self, degree, length):
"""Move the line by a certain degree and length."""
self.start_pos = (self.start_pos[0] + length * math.cos(math.radians(degree)),
self.start_pos[1] + length * math.sin(math.radians(degree)))
self.end_pos = self.calculate_end_pos()
def show(self):
"""Draw the line on the screen."""
pygame.draw.line(self.screen, self.color, self.start_pos, self.end_pos, 2)
def hide(self):
"""Clear the line from the screen by drawing over it with the background color."""
pygame.draw.line(self.screen, self.bgcolor, self.start_pos, self.end_pos, 2)
# Example usage:
pygame.init()
screen = pygame.display.set_mode((800, 600))
line = Line(screen, 'method', (400, 300), 100, (255, 0, 0), (0, 0, 0))
running = True
while running:
for event in pygame.event.get():
if event.type == pygame.QUIT:
running = False
elif event.type == pygame.USEREVENT:
# Handle color revert event
line.recolor_tmp((0, 255, 0), 2) # Example of temporary recoloring
screen.fill((0, 0, 0)) # Clear the screen
line.show() # Draw the line
pygame.display.flip() # Update the display
pygame.quit()

View File

@ -0,0 +1,9 @@
{
"vel":0,
"acc":0,
"xangle":0,
"yangle":0,
"zangle":0
"time":0
}

View File

@ -0,0 +1,14 @@
from os import environ
import time
environ['PYGAME_HIDE_SUPPORT_PROMPT'] = '1'
import pygame as sdl
name = "Basic HUD Framework"
def action():
if __name__ == "__main__":
sdl.init()
sdl.display.set_caption(f"Commodore UI Element Test Window")
screen = sdl.display.set_mode((1024, 768), sdl.RESIZABLE)

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 66 KiB

View File

@ -0,0 +1,58 @@
{
"devices": {
"aile_left": {
"type": "Flank",
"name": "左副翼",
"angle": 0
},
"aile_right": {
"type": "Flank",
"name": "右副翼",
"angle": 0
},
"flap_left": {
"type": "Flank",
"name": "左襟翼",
"angle": 0
},
"flap_right": {
"type": "Flank",
"name": "右襟翼",
"angle": 0
},
"tail_vert": {
"type": "Flank",
"name": "垂直尾翼",
"angle": 0
},
"tail_left": {
"type": "Flank",
"name": "左尾翼",
"angle": 0
},
"tail_right": {
"type": "Flank",
"name": "右尾翼",
"angle": 0
},
"engine_main": {
"type": "Engine",
"name": "主引擎",
"speed": 0
}
},
"name": "零号侧卫",
"sensors": {
"speed": 99,
"battery": 0.8,
"xangle": 201,
"yangle": 108,
"zangle": 0,
"sign": 322,
"cpuload": 0.12,
"memload": 0.88,
"memsum": 2048,
"torch": 0,
"acc": 3
}
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 17 KiB

View File

@ -0,0 +1,112 @@
#include <Servo.h>
#include <Arduino_JSON.h>
#include <Arduino_AVRSTL.h>
#include <assert.h>
#include <map>
#include <String>
constexpr short svo_num = 2;
constexpr short svo_dig_pin[svo_num] = {9, 10};
Servo svo[svo_num]; // al, ar, tl, tr
short svo_angle[svo_num];
std::map<String, short> svo_name2idx = {{"al", 0}, {"ar", 1}};
constexpr short eng_num = 1;
constexpr short eng_dig_pin[eng_num] = {11};
Servo eng[eng_num]; // al, ar, tl, tr
short eng_speed[eng_num];
std::map<String, short> eng_name2idx = {{"e1", 0}};
JSONVar data;
void svo_set(short idx, short angle){
svo[idx].write(angle);
svo_angle[idx] = angle;
delay(15);
}
short svo_get(short idx){
return svo_angle[idx];
}
void svo_pnt_by_name(String name){
Serial.print("{\"" + name + "\":");
Serial.print(svo_angle[svo_name2idx[name]]);
Serial.print("}\r\n");
}
void svo_set_by_name(String name, short num){
svo_set(svo_name2idx[name], num);
}
void eng_set(short idx, short speed){
eng[idx].writeMicroseconds(speed);
eng_speed[idx] = speed;
delay(15);
}
short eng_get(short idx){
return eng_speed[idx];
}
void eng_pnt_by_name(String name){
Serial.print("{\"" + name + "\":");
Serial.print(eng_speed[eng_name2idx[name]]);
Serial.print("}\r\n");
}
void eng_set_by_name(String name, short num){
eng_set(eng_name2idx[name], num);
}
void setup() {
for(short i = 0; i < svo_num; ++i){
svo[i].attach(svo_dig_pin[i]);
}
for(short i = 0; i < svo_num; ++i){
svo_set(i, 0);
}
for(short i = 0; i < eng_num; ++i){
eng[i].attach(eng_dig_pin[i]);
}
for(short i = 0; i < eng_num; ++i){
eng_set(i, 0);
}
Serial.begin(9600);
//Serial.println("\r\n");
}
void handle(String type, String device, String option, short num){
if(type == "svo"){
if(option == "q"){
svo_pnt_by_name(device);
}
if(option == "s"){
svo_set_by_name(device, num);
}
}
if(type == "eng"){
if(option == "q"){
eng_pnt_by_name(device);
}
if(option == "s"){
eng_set_by_name(device, num);
}
}
}
void loop() {
//Serial.print("hihihi\r\n");
//Serial.print("\r\n");
while(Serial.available() == 0);
data = JSON.parse(Serial.readString());
if(JSON.typeof(data) == "undefined") {
Serial.print("json_failed\r\n");
return;
}
handle(data["type"], data["device"], data["option"], data["num"]);
/*
data["t(ype)"]: svo/eng
data["d(evice)"]: al, ar, tl, tr
data["o(ption)"]: s(et)/q(uery)
data["n(um)"]: SHORT
*/
}

View File

@ -0,0 +1,91 @@
import json
import serial
import serial.tools.list_ports
import time
data_table = dict()
class Motor(object):
angle = None
def __init__(self, code):
self.angle = 0
self.code = code
data_table[code] = self.angle
def get(self):
self.angle = data_table[self.code]
return self.angle
def set(self, angle):
self.angle = angle
commander("svo", self.code, "s", angle)
return self.angle
class Engine(object):
speed = None
def __init__(self, code):
self.speed = 0
self.code = code
data_table[code] = self.speed
def get(self):
self.speed = data_table[self.code]
return self.speed
def tune(self, new_speed):
self.speed = new_speed
commander("eng", self.code, "s", new_speed)
return self.speed
class Battery:
def get():
power_left = 0.9
return power_left
def stat():
status = "Unplugged"
return status
class Serial:
ino = serial.Serial("COM7", 9600, timeout=2)
if ino.is_open:
print("串口初始化成功")
def close():
Serial.ino.close()
def write(data):
n = Serial.ino.write(data.encode())
print(f"写入 {n} 字节", data.encode())
def readln():
data = Serial.ino.readline()
print(f"读入: {data.decode('utf-8', 'ignore')}\n")
return data.decode('utf-8', 'ignore')
def commander(type, device, option, num = -1):
d = f""""type":"{type}", "device":"{device}", "option":"{option}", "num":{num}"""
d = "{" + d + "}"
Serial.write(d)
if option == "q":
b = Serial.readln()
if b.strip() != "":
print("BIS", b)
b = json.loads(b)
for i in b.keys():
data_table[i] = b[i]
def debug():
ports_list = list(serial.tools.list_ports.comports())
if len(ports_list) <= 0:
print("无串口设备。")
else:
print("可用的串口设备如下:")
for comport in ports_list:
print(list(comport)[0], list(comport)[1])
#Serial.init()
#time.sleep(1)
#print("hi",a)
#Serial.readln()
Serial.close()
"""/*
data["t(ype)"]: svo/eng
data["d(evice)"]: al, ar, tl, tr
data["o(ption)"]: s(et)/q(uery)
data["n(um)"]: SHORT
*/"""
if __name__ == "__main__":
debug()

View File

@ -0,0 +1,14 @@
# Host Config
model: "SU27" # J-11/J-16
name: "零号侧卫"
hardware: # 硬件
surfaces: # 控制面
- al: "左副翼"
- ar: "右副翼"
- tv: "垂直尾翼"
- tl: "左尾翼"
- tr: "右尾翼"
engines: # 引擎
- e1: "一号引擎"
bools: # 布尔式硬件
- l1: "航行灯"

View File

View File

@ -0,0 +1,33 @@
class Motor(object):
angle = None
def __init__(self, id):
self.angle = 0 # mark
self.id = id
def get(self):
return self.angle
def turn(self, add_angle):
self.angle += add_angle
return self.angle
class Engine(object):
speed = None
def __init__(self, id):
self.speed = 0 # Mark
self.id = id
def get(self):
return self.speed
def tune(self, new_speed):
self.speed = new_speed
return self.speed
class Battery:
def get():
power_left = 0.9
return power_left
def stat():
status = "Unplugged"
return status
class Network:
def stat():
delay = 0.2 # ms
return delay # or -1 (unreachable)

View File

@ -0,0 +1,201 @@
import dummy_api as ctrl
import time
import os
import threading
class Surface(object):
motor = None
name = None
curr_angle = None
id = None
type_ = "surface"
def __init__(self, name, id):
self.motor = ctrl.Motor(id)
self.curr_angle = self.motor.get()
self.name = name
self.id = id
print("初始化操纵面 {}, 硬件代号绑定为 {}".format(name, id))
def add_angle(self, angle):
self.motor.turn(angle)
self.curr_angle = self.motor.get();
#print("将 {} 的角度加成 {} 度".format(self.name, angle))
def set_angle(self, angle):
angle_turn = angle - self.motor.get()
self.motor.turn(angle_turn)
self.curr_angle = self.motor.get()
#print("将 {} 的角度设置为 {} 度".format(self.name, angle))
def get_angle(self):
self.curr_angle = self.motor.get()
#print("{} 当前角度为 {} 度".format(self.name, self.curr_angle))
return self.curr_angle
def status(self):
return {"type":"Surface", "name":self.name, "angle":self.curr_angle}
def selfchk(self):
print("开始自检操纵面 {}".format(self.name))
self.add_angle(30)
self.add_angle(-60)
self.set_angle(0)
class Engine(object):
engine = None
curr_speed = None
id = None
name = None
type_ = "engine"
def __init__(self, name, id):
self.id = id
self.name = name
self.engine = ctrl.Engine(id)
self.curr_speed = self.engine.get()
print("初始化引擎 {}, 硬件代号绑定为 {}".format(name, id))
def set_speed(self, new_speed):
self.engine.tune(new_speed)
self.curr_speed = self.engine.get()
##print("将 {} 的转速调谐为 {} RPM".format(self.name, new_speed))
def add_speed(self, add_speed):
self.engine.tune(self.curr_speed + add_speed)
self.curr_speed = self.engine.get()
##print("将 {} 的转速加成 {} RPM".format(self.name, add_speed))
def get_speed(self):
##print("{} 当前转速为 {} RPM".format(self.name, self.curr_speed))
self.curr_speed = self.engine.get()
return self.curr_speed
def status(self):
##print(self.curr_speed)
return {"type":"Engine", "name":self.name, "speed":self.get_speed()}
def selfchk(self):
print("开始自检引擎 {}".format(self.name))
self.add_speed(3)
self.add_speed(-6)
self.set_speed(0)
self.curr_speed = self.engine.get()
class Sensor:
data = dict()
data["speed"] = 0
data["battery"] = 0
data["xangle"] = 0
data["yangle"] = 0
data["zangle"] = 0
data["sign"] = 0
data["cpuload"] = 0
data["memload"] = 0
data["memsum"] = 0
data["torch"] = 0
data["acc"] = 0
is_torch_on = 0
@staticmethod
def speed():
Sensor.data["speed"] = 99
return Sensor.data["speed"]
@staticmethod
def battery():
Sensor.data["battery"] = 0.8
return Sensor.data["battery"]
@staticmethod
def xangle():
Sensor.data["xangle"] = 201
return Sensor.data["xangle"]
@staticmethod
def yangle():
Sensor.data["yangle"] = 108
return Sensor.data["yangle"]
@staticmethod
def zangle():
Sensor.data["zangle"] = 0
return Sensor.data["zangle"]
@staticmethod
def sign():
Sensor.data["sign"] = 322
return Sensor.data["sign"]
@staticmethod
def cpuload():
Sensor.data["cpuload"] = 0.12
return Sensor.data["cpuload"]
@staticmethod
def memload():
Sensor.data["memload"] = 0.88
return Sensor.data["memload"]
@staticmethod
def memsum():
Sensor.data["memsum"] = 2048
return Sensor.data["memsum"]
@staticmethod
def torch():
Sensor.data["torch"] = Sensor.is_torch_on
return Sensor.data["torch"]
@staticmethod
def torchon():
Sensor.is_torch_on = 1
@staticmethod
def acc():
Sensor.data["acc"] = 3
return Sensor.data["acc"]
@staticmethod
def net_delay():
Sensor.data["net_delay"] = 300
return Sensor.data["net_delay"]
@staticmethod
def refresh():
Sensor.speed()
Sensor.battery()
Sensor.xangle()
Sensor.yangle()
Sensor.zangle()
Sensor.sign()
Sensor.cpuload()
Sensor.memload()
Sensor.memsum()
Sensor.torch()
Sensor.acc()
Sensor.net_delay()
@staticmethod
def stat():
#Sensor.refresh()
return Sensor.data
def pseudo_gui():
import tkinter as tk
def update_label(key, value):
labels[key].config(text=f"{key}: {value}")
def update():
while 1:
for key in Sensor.data.keys():
Sensor.data[key] = sliders[key].get()
root = tk.Tk()
root.title("DEBUGGING CONSOLE")
labels = {}
sliders = {}
# 自动布局
for key in Sensor.data.keys():
# 创建标签
label = tk.Label(root, text=f"{key}: {Sensor.data[key]}")
label.pack()
labels[key] = label
# 创建滑块
slider = tk.Scale(root, from_=0, to=100, orient=tk.HORIZONTAL, command=lambda value, k=key: update_label(k, value))
slider.pack()
sliders[key] = slider
up = threading.Thread(target=update, name='Update')
up.start()
root.mainloop()
up.join()

View File

@ -0,0 +1,163 @@
import yaml
__dummy_mode__ = 1
cfg = None
if not __dummy_mode__:
import sys, os
sys.path.append("arduino_api")
sys.path.append("termux_lib")
import termux_lib as lib
import socket
import json
import os
import time
import threading
else:
import sys
sys.path.append("dummy_all")
import dummy_lib as lib
import socket
import json
import os
import time
import threading
def hwinit():
global hw
hw = dict()
hw["aile_left"] = lib.Flank("左副翼", "al")
hw["aile_right"] = lib.Flank("右副翼", "ar")
#hw["tail_vert"] = lib.Flank("垂直尾翼", "tv")
hw["tail_left"] = lib.Flank("左尾翼", "tl")
hw["tail_right"] = lib.Flank("右尾翼", "tr")
hw["engine_main"] = lib.Engine("一号引擎", "e1")
def check():
for i in hw.values():
i.selfchk()
print("操纵面与引擎自检完成, 等待远程指令")
def proc(data):
global hw
#print(data)
inf = json.loads(data.replace('\n', ';'))
print("DT"+data + "DT")
if inf["type"] == "cmd":
#print(f"执行命令")
exec(inf["cmd"])
elif inf["type"] == "syscmd":
#print(f"执行系统级命令")
os.system(inf["cmd"])
elif inf["type"] == "reset":
pass
#print(f"系统重置")
elif inf["type"] == "stop":
#print(f"退出系统")
return 1
else:
pass
#print(f"未知命令")
return 0
global isx
isx = 0
def stat():
global isx
status = dict()
status["devices"] = dict()
for i in hw.items():
status["devices"][i[0]] = i[1].status()
status["name"] = name
status["sensors"] = lib.Sensor.stat()
status["time"] = time.asctime()
isx+=1
return status
def debug_shell():
lib.Sensor.pseudo_gui()
def init_hardware():
global hwobj
hwobj = dict()
print("注册传感器")
for i in hw["surfaces"]:
hwobj[i.key] = lib.Surface(i.value, i.key)
print("注册操纵面")
for i in hw["surfaces"]:
hwobj[i.key] = lib.Surface(i.value, i.key)
print("注册引擎")
for i in hw["engines"]:
hwobj[i.key] = lib.Engine(i.value, i.key)
print("注册机炮")
for i in hw["cannons"]:
hwobj[i.key] = lib.Engine(i.value, i.key)
print("注册供能系统")
for i in hw["powersys"]:
hwobj[i.key] = lib.Engine(i.value, i.key)
print("注册机轮制动")
for i in hw["powersys"]:
hwobj[i.key] = lib.Engine(i.value, i.key)
print("注册雷达")
for i in hw["powersys"]:
hwobj[i.key] = lib.Engine(i.value, i.key)
print("注册挂架")
for i in hw[""]:
hwobj[i.key] = lib.Engine(i.value, i.key)
print("注册布尔元件")
for i in hw["bools"]:
hwobj[i.key] = lib.Surface(i.value, i.key)
def selfchk():
print("开始自检")
for i in hw:
print(f"{i}")
for i in hw["engines"]:
print(f"{j} ", end="")
if __name__ == "__main__":
name = "零号侧卫"
global hw
hw = dict()
port = 40808
print(f"Commdore 飞行控制系统 服务端")
print("正在加载配置文件")
with open("config.yaml") as cfg_file:
cfg = yaml.safe_load(cfg_file)
name = cfg["name"]
model = cfg["model"]
hw = cfg["hardware"]
print(f"型号: {model}")
print(f"名称: {name}")
print("正在初始化硬件")
print("启动 socket 网络通信")
print("启动备用 socket 网络通信")
dummy = socket.socket()
dummy.bind(("localhost", port)) # 端口监听
dummy.listen(1)
print(f"监听端口 " + str(port))
conn, address = dummy.accept()
print(f"来自 {address} 的连接已接收")
msg = json.dumps(stat()) # 状态回传
size = len(msg.encode())
conn.send(msg.encode("UTF-8").ljust(2048))
np = threading.Thread(target=debug_shell, name='Debugging')
np.start()
while True:
# 接收消息
print(lib.Sensor.data)
data: str = conn.recv(2048).decode("UTF-8")
if data == "" or data == None:
continue
print(f"命令接收: {data}")
ret = proc(data)
if ret == 1:
break
msg = json.dumps(stat()) # 状态回传
size = len(msg.encode())
conn.send(msg.encode("UTF-8").ljust(2048 - size)) # encode将字符串编码为字节数组对象
#print(msg.encode("UTF-8").decode('unicode_escape'))
#print(f"当前状态已回传")
# 关闭连接
conn.close()
dummy.close()
np.join()

View File

@ -0,0 +1,232 @@
import sys
import os
sys.path.append("../arduino_api")
import arduino_api as ctrl
import time
import os
import threading
import json
import subprocess
import psutil
import threading
class Flank(object):
motor = None
name = None
curr_angle = None
code = None
type = "flank"
def __init__(self, name, code):
self.motor = ctrl.Motor(code)
self.curr_angle = self.motor.get()
self.name = name
self.code = code
print("初始化操纵面 {}, 硬件代号绑定为 {}".format(name, code))
def set_angle(self, angle):
self.motor.set(angle)
self.curr_angle = self.motor.get()
#print("将 {} 的角度设置为 {} 度".format(self.name, angle))
def add_angle(self, add_angle):
self.motor.set(self.curr_angle + add_angle)
self.curr_angle = self.motor.get()
def status(self):
return {"type":"Flank", "name":self.name, "angle":self.curr_angle}
def selfchk(self):
print("开始自检操纵面 {}".format(self.name))
self.add_angle(30)
self.add_angle(-60)
self.set_angle(0)
class Engine(object):
engine = None
curr_speed = None
code = None
name = None
type = "engine"
def __init__(self, name, code):
self.code = code
self.name = name
self.engine = ctrl.Engine(code)
self.curr_speed = self.engine.get()
print("初始化引擎 {}, 硬件代号绑定为 {}".format(name, code))
def set_speed(self, new_speed):
self.engine.tune(new_speed)
self.curr_speed = self.engine.get()
##print("将 {} 的转速调谐为 {} RPM".format(self.name, new_speed))
def add_speed(self, add_speed):
self.engine.tune(self.curr_speed + add_speed)
self.curr_speed = self.engine.get()
##print("将 {} 的转速加成 {} RPM".format(self.name, add_speed))
def get_speed(self):
##print("{} 当前转速为 {} RPM".format(self.name, self.curr_speed))
self.curr_speed = self.engine.get()
return self.curr_speed
def status(self):
##print(self.curr_speed)
return {"type":"Engine", "name":self.name, "speed":self.get_speed()}
def selfchk(self):
print("开始自检引擎 {}".format(self.name))
self.add_speed(3)
self.add_speed(-6)
self.set_speed(0)
self.curr_speed = self.engine.get()
"""
@liteon-proximity: 光学接近传感器,用于检测物体的接近
!yas537-mag: 磁力计传感器,用于测量磁场强度和方向
@liteon-light: 光传感器,用于测量环境光强度
@MPU6050-gyro: 陀螺仪传感器,用于测量角速度
@MPU6050-accel: 加速度计传感器,用于测量线性加速度
!liteon-pocket: 可能是特定用途的传感器,具体功能需参考设备文档
*yas537-orientation: 方向传感器,结合磁力计和加速度计数据来确定设备的方向
@Game Rotation Vector Sensor: 用于测量设备的旋转向量,常用于游戏和增强现实应用
@GeoMag Rotation Vector Sensor: 结合地磁和加速度数据来测量设备的旋转向量
@Gravity Sensor: 测量重力加速度,用于确定设备的姿态
*Linear Acceleration Sensor: 测量去除重力影响后的线性加速度
@Rotation Vector Sensor: 综合陀螺仪和加速度计数据来测量设备的旋转向量
"""
class Sensor:
data = {
"speed": 0,
"battery": 0,
"xangle": 0,
"yangle": 0,
"zangle": 0,
"sign": 0,
"cpuload": 0,
"memload": 0,
"memsum": 0,
"torch": 0,
"acc": 0
}
is_torch_on = 0
@staticmethod
def speed(): #TODO
Sensor.data["speed"] = -1
return Sensor.data["speed"]
@staticmethod
def battery(): # 电池剩余
return Sensor.data["sysbattery"]
def battery(): # TODO: 电机电池剩余
return Sensor.data["battery"]
@staticmethod
def xangle(): # X迎角
return Sensor.data["xangle"]
@staticmethod
def yangle():
return Sensor.data["yangle"]
@staticmethod
def zangle():
return Sensor.data["zangle"]
@staticmethod
def sign(): # 信号强度
Sensor.data["sign"] = -1
return Sensor.data["sign"]
@staticmethod
def cpuload(): # CPU占用(百分比)
Sensor.data["cpuload"] = psutil.cpu_percent(interval=1) / 100
return Sensor.data["cpuload"]
@staticmethod
def memload(): # 内存占用(百分比)
Sensor.data["memload"] = psutil.virtual_memory().percent / 100
return Sensor.data["memload"]
@staticmethod
def memsum(): # 内存总量(MB)
return Sensor.data["memsum"]
@staticmethod
def torch():
return Sensor.data["torch"]
@staticmethod
def torchon(): # 打开电筒
Sensor.is_torch_on = not Sensor.is_torch_on
to = {0:"off", 1:"on"}
os.system(f"torch {to[Sensor.is_torch_on]} &")
@staticmethod
def refresh():
Sensor.speed()
Sensor.battery()
Sensor.xangle()
Sensor.yangle()
Sensor.zangle()
Sensor.sign()
Sensor.cpuload()
Sensor.memload()
Sensor.memsum()
Sensor.torch()
@staticmethod
def stat():
#Sensor.refresh()
return Sensor.data
def update_battery():
while True:
result = subprocess.run(['termux-battery-status'], capture_output=True, text=True)
data = json.loads(result.stdout)
Sensor.data["sysbattery"] = data["percentage"]
def update_orientation():
while True:
# TODO: 优化
result = subprocess.run(['termux-sensor', '-s', 'yas537-orientation', '-n', '1'], capture_output=True, text=True)
data = json.loads(result.stdout)
Sensor.data["xangle"] = data["yas537-orientation"]["values"][0]
Sensor.data["yangle"] = data["yas537-orientation"]["values"][1]
Sensor.data["zangle"] = data["yas537-orientation"]["values"][2]
def update_acceleration():
while True:
result = subprocess.run(['termux-sensor', '-s', 'Linear Acceleration Sensor', '-n', '1'], capture_output=True, text=True)
data = json.loads(result.stdout)
Sensor.data["acc"] = data["Linear Acceleration Sensor"]["values"]
def update_func(cmd):
while True:
exec(cmd)
time.sleep(0.1)
def init():
Sensor.data = {
"speed": 0,
"battery": 0,
"xangle": 0,
"yangle": 0,
"zangle": 0,
"sign": 0,
"cpuload": 0,
"memload": 0,
"memsum": 0,
"torch": 0,
"acc": 0
}
os.system("termux-torch off &")
Sensor.is_torch_on = 0
Sensor.data["memsum"] = psutil.virtual_memory().total / (1024 * 1024)
def deamon():
# 启动线程
Sensor.battery_thread = threading.Thread(target=Sensor.update_battery)
Sensor.orientation_thread = threading.Thread(target=Sensor.update_orientation)
Sensor.acceleration_thread = threading.Thread(target=Sensor.update_acceleration)
Sensor.other_thread = threading.Thread(target=Sensor.update_func, args=("""Sensor.sign()\nSensor.cpuload()\nSensor.memload()\nSensor.torch()"""))
Sensor.battery_thread.start()
Sensor.orientation_thread.start()
Sensor.acceleration_thread.start()
def stop():
Sensor.orientation_thread.join()
Sensor.battery_thread.join()
Sensor.acceleration_thread.join()
Sensor.other_thread.join()